A chaotic-based improved many-objective Jaya algorithm for many-objective optimization problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IGD Indicator-based Evolutionary Algorithm for Many-objective Optimization Problems

Inverted Generational Distance (IGD) has been widely considered as a reliable performance indicator to concurrently quantify the convergence and diversity of multiand manyobjective evolutionary algorithms. In this paper, an IGD indicatorbased evolutionary algorithm for solving many-objective optimization problems (MaOPs) has been proposed. Specifically, the IGD indicator is employed in each gen...

متن کامل

A Predictive Pareto Dominance Based Algorithm for Many-Objective Problems

1. Abstract Multiobjective genetic algorithms (MOGAs) have successfully been used on a wide range of real world problems. However, it is generally accepted that the performance of most state-of-the-art multiobjective genetic algorithms tend to perform poorly for problems with more than four objectives, termed many-objective problems. The contribution of this paper is a new approach for identify...

متن کامل

Improved Regularity Model-based EDA for Many-objective Optimization

The performance of multi-objective evolutionary algorithms deteriorates appreciably in solving many-objective optimization problems which encompass more than three objectives. One of the known rationales is the loss of selection pressure which leads to the selected parents not generating promising offspring towards Pareto-optimal front with diversity. Estimation of distribution algorithms sampl...

متن کامل

Machine learning based decision support for many-objective optimization problems

Multiple Criteria Decision-Making (MCDM) based Multi-objective Evolutionary Algorithms (MOEAs) are increasingly becoming popular for dealing with optimization problems with more than three objectives, commonly termed as many-objective optimization problems (MaOPs). These algorithms elicit preferences from a single or multiple Decision Makers (DMs), a priori or interactively, to guide the search...

متن کامل

Using Different Many-Objective Techniques in Particle Swarm Optimization for Many Objective Problems: An Empirical Study

Pareto based Multi-Objective Evolutionary Algorithms face several problems when dealing with a large number of objectives. In this situation, almost all solutions become nondominated and there is no pressure towards the Pareto Front. The use of Particle Swarm Optimization algorithm (PSO) in multi-objective problems grew in recent years. The PSO has been found very efficient in solve Multi-Objec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Industrial Engineering Computations

سال: 2021

ISSN: 1923-2926,1923-2934

DOI: 10.5267/j.ijiec.2020.10.001